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Abstract
Technical terms in patent documents are expressed with highly variable, domain-specific language, hindering cross-lingual prior-art
search and knowledge discovery. Existing automatic thesaurus construction pipelines either rely on handcrafted patterns, which
suffer from low recall, or on graph-augmented representation learning, which is accurate but complex and largely monolingual. We
present a lightweight three-stage framework that: (1) filters candidate term pairs with off-the-shelf embeddings, (2) assigns fine-grained
semantic relations via a ChatGPT-4o model fine-tuned on 36k English patent pairs, and (3) enforces cross-lingual consistency through
fixed-expression hypernym seeds automatically aligned between Japanese and English. The final output is written directly into an
incrementally updateable multilingual thesaurus graph. On the Google Patent Phrase Similarity Dataset, our fine-tuned LLM attains
0.762 Pearson / 0.738 Spearman, outperforming strong baselines (SBERT, Patent-BERT) and the recent graph-based RA-Sim model by up
to 0.14 correlation points.
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1. Introduction
Patent documents constitute a rich, internationally dis-
tributed repository of technical knowledge; yet the diver-
sity of languages, orthographies, and complex compound
terms poses a formidable barrier to cross‑lingual search
and comparison. National patent offices and companies
therefore spend substantial resources to maintain thesauri
and classification schemes. Previous attempts at automat-
ing this process have focused on pattern‑based extrac-
tion (e.g. Hearst patterns[1]) or supervised models built
on Word2Vec[2]/BERT‑style embeddings[3], but their sin-
gle‑language assumptions and limited domain adaptation
have left the multilingual coverage of specialised terms and
the capture of fine‑grained semantic relations (hypernymy,
meronymy, etc.) still inadequate.

This paper leverages the broad cross‑lingual knowledge
encoded in OpenAI’s ChatGPT‑4o to introduce a simple
framework that, given any pair of patent terms, directly pre-
dicts their semantic relation. High accuracy in English is en-
sured by fine‑tuning the model on the Google Patent Phrase
Similarity Dataset[4], while extension to other languages is
achieved without additional corpora, simply by exploiting
the model’s latent multilingual representations. For empiri-
cal verification, we extract hypernym–hyponym candidates
from Japanese and English patents using fixed expressions
such as “A nado no B” (Japanese) and “B such as A” (En-
glish), align them through automatic translation, and use
the resulting high‑confidence bilingual pairs to test whether
the model assigns consistent relations across languages.

The proposed study makes three contributions.

• It demonstrates that a large language model can be
transferred to multilingual specialised‑term relation
prediction with only minimal fine‑tuning, drasti-
cally reducing the cost of building and maintaining
separate models for every language.
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• It presents a workflow that organises the relations
predicted by the LLM into a graph whose nodes are
terms and edges are relations, and then expands this
graph recursively to build an automatically updat-
able multilingual patent thesaurus.

• It introduces an evaluation procedure that combines
pattern‑based hypernym candidates extracted inde-
pendently from Japanese and English patents with
their translation alignments, enabling the commu-
nity to verify whether the LLM’s predictions remain
consistent across languages.

2. Related Work
Automatic prediction of semantic relations—synonymy, hy-
pernymy, meronymy, and the like—between technical terms
has long underpinned knowledge acquisition and high-
recall retrieval. Historical approaches fall into three broad
families: symbolic pattern rules, distributional or embedding
methods, and, most recently, large language models (LLMs).
Below we survey their evolution in chronological order, em-
phasising patent-specific work and highlighting how our
study differs.

Early research relied on explicit lexico‑syntactic patterns.
Hearst’s seminal paper introduced templates such as “X is
a kind of Y ” to harvest thousands of hypernym–hyponym
pairs at negligible cost [1]. The same idea was later ap-
plied to Japanese patent corpora: Nanba et al. mined the
pattern “A nado no B” (B such as A), aligned the result-
ing pairs with English equivalents, and built a bilingual
thesaurus with 78 % F1 [5]. Building on this, their subse-
quent study translated scholarly terms into patent terminol-
ogy by combining citation analysis with an automatically
constructed thesaurus, significantly broadening the candi-
date space [6]. Their scope, however, is restricted to hyper-
nym–hyponym relations only, whereas the present study
predicts a full spectrum of relations—including synonymy,
meronymy, and graded similarity—across languages. Sym-
bolic methods moreover demand handcrafted patterns for
every language and domain; even in English, Roller et al.
revisited Hearst rules with modern corpora to boost accu-
racy, yet still faced recall limits when wording drifted from
canonical templates [7]. Patents exacerbate this problem:
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identical concepts are phrased idiosyncratically (“soccer
ball’’ vs. “spherical recreational device’’), so surface patterns
alone capture only a fraction of true relations. A broader
survey of how rule‑based and other NLP techniques trans-
fer—or fail to transfer—between patent sub‑genres is given
by Andersson et al. [8]. Complementary work by Judea et al.
shows that figure references themselves can be harvested
as symbolic cues, yielding fully unsupervised, high‑quality
training data for patent terminology extraction [9].

Distributional approaches learn continuous vectors from
large corpora. Word2Vec[2] and GloVe[10] established that
words with similar contexts occupy nearby positions in an
embedding space. Jana et al. projected a distributional the-
saurus into such a space and achieved strong co-hyponym
detection by clustering context-similar terms [11]. How-
ever, plain similarity cannot distinguish type (synonymy
versus hypernymy). Subsequent work trained classifiers or
added constraints; Liu et al. prompted BERT with masked
templates (“X is a type of __’’) to recover hypernyms more
robustly [12]. Contextual models improved further with
Transformer pre-training: BERT [3] and its Siamese vari-
ant Sentence-BERT (SBERT) [13] achieved state-of-the-art
semantic similarity. Yet domain adaptation proved essen-
tial—Patent-BERT, trained on claim corpora, vastly outper-
formed general BERT on patent relation benchmarks.

The advent of LLMs enabled direct reasoning over rela-
tions. Models such as ChatGPT-4 store vast world knowl-
edge and can generate definitions, synonyms, or hypernyms
with minimal prompting. Recent reports show ChatGPT-
4 successfully deriving taxonomic links for multilingual
cultural terms, indicating latent cross-lingual competence
unavailable to earlier systems. In the patent realm, Peng
and Yang combined a contextual encoder with a citation-
derived phrase graph; their self-supervised method captured
global evidence beyond local context and raised similarity
correlation by seven points [14]. Such hybrids improve accu-
racy but demand heavy pipelines (citation crawling, graph
learning) and remain monolingual.

Cross-domain evaluation has been invigorated by re-
sources tailored to patents. The Google Patent Phrase Simi-
larity Dataset supplies 50 k phrase pairs with graded simi-
larity and relation labels [4]; Kaggle competitions around it
confirmed SBERT-style models as strongest baselines and
revealed the benefit of patent-specific pre-training. Yet most
entries handled English only and did not automate thesaurus
induction.

Our study departs from prior art in three ways. First, we
retain a lightweight embedding filter but rely on a mini-
mally fine-tuned ChatGPT-4o to infer relations, avoiding
bespoke citation graphs or rule sets. Second, we enforce
cross-lingual consistency via pattern-harvested bilingual
seed pairs, allowing the same model to populate a thesaurus
in Japanese and English without extra translation resources.
Third, the LLM’s output is written directly into an incre-
mentally expandable graph, turning relation inference into
immediate thesaurus construction rather than a separate
post-processing step. In doing so, we address the lingering
gaps of multilingual coverage, domain knowledge acquisi-
tion, and pipeline complexity that earlier approaches left
open.

3. Proposed Method
Our framework builds a multilingual patent thesaurus
through two alternative relation–inference strategies plus a
multilingual verification step: (i) an embedding-based
similarity inference, (ii) an LLM-based explicit‐la-
bel inference, and (iii) pattern-driven multilingual
enrichment. Stages (i) and (ii) pursue the same objec-
tive—predicting the semantic relation of a term pair—but
differ in the signal they exploit: dense vectors vs. generative
reasoning. Stage (iii) then enforces cross-lingual consistency
and incrementally expands the thesaurus graph.

3.1. Embedding-Based Similarity Inference

Given a term pair (𝑡𝑖, 𝑡𝑗), we obtain vectors e𝑖, e𝑗 ∈ ℝ𝑑 from
either OpenAI Embeddings (𝑑 = 1536) or multilingual-e5-
large1 (𝑑=1024). Their cosine similarity,

sim(𝑡𝑖, 𝑡𝑗) =
e𝑖 ⋅ e𝑗
‖e𝑖‖ ‖e𝑗‖

,

serves as a proxy score for semantic relatedness. Pairs whose
score exceeds a threshold 𝜏 (0.35 for OpenAI, 0.30 for e5) are
tentatively regarded as related (synonym or taxonomic) and
forwarded to the multilingual verification in Stage (iii). This
embedding view offers a fast, language-agnostic approxima-
tion that requires no fine-tuning.

3.2. LLM-Based Explicit Relation Inference
Alternatively, the same pair can be passed to ChatGPT-
4o mini, fine-tuned on the Google Patent Phrase Similarity
Dataset. The prompt asks:

Based on ’ reading machine’, what is the relation-
ship of ’ photocopier’? Please choose the most
appropriate one from the following:
1: ’Not related.’
2: ’Other high level domain match.’
3: ’Holonym (a whole of).’
4: ’Meronym (a part of).’
5: ’Antonym.’
6: ’Structural match.’
7: ’Hypernym (narrow-broad match).’
8: ’Hyponym (broad-narrow match).’
9: ’Highly related.’
10: ’Very highly related.’

The model chooses a single label from Table 1; we map it
to a numerical score {1.00, 0.75, 0.50, 0.25, 0.00}. Compared
with Stage (i), the LLM returns an explicit relation type (e.g.,
Hyponym, Meronym) rather than a scalar similarity.

3.3. Pattern-Driven Multilingual
Enrichment

1. Seed extraction:
• Japanese: phrases matching “A nado no B”
• English: phrases matching “B such as A”

These patterns produce provisional hyponym (𝐴) /
hypernym (𝐵) pairs.

2. Translation alignment: English pairs are machine-
translated to Japanese using ChatGPT and inter-
sected with the Japanese set;high-confidence bilin-
gual pairs.

1https://huggingface.co/intfloat/multilingual-e5-large



Table 1
Relation labels and their scores.[4]

Relation label Score
Very Highly related 1.00
Highly related 0.75
Hyponym / Hypernym 0.50
Structural match 0.50
Meronym / Holonym 0.25
Antonym 0.25
Other domain match 0.25
Not related 0.00

3. Cross-lingual verification: Each pair is checked
by either Stage (i) or (ii); only pairs whose Japanese
and English predictions agree are accepted.

4. Thesaurus graph update: Accepted pairs become
edges (relation type) between term nodes. The graph
updates automatically as new pairs arrive.

By offering two complementary inference routes—fast
embedding similarity or explicit LLM labelling—and a veri-
fication layer that fuses them across languages, our method
achieves multilingual coverage with minimal fine-tuning
while avoiding complex citation graphs or handcrafted rules.
Experimental details follow in Section 4.

4. Experiments

4.1. Experimental Setup
Datasets For the English task we adopt the Google Patent
Phrase Similarity Dataset, using 36,473 pairs for training and
9,232 for validation and testing.

Alternatives

• Embedding models: Word2Vec, GloVe, BERT,
SBERT, Patent-BERT (baselines reported by [4]),
OpenAI Embeddings (text-embedding-3-large), and
multilingual-e5-large.

• Graph + encoder: the phrase-graph embeddings
released with RA-Sim (a baseline reported by [14]).

• LLMs: ChatGPT-4o and ChatGPT-4o mini in their
pretrained form, plus fine-tuned versions on the En-
glish training split.

Metrics For English we report Pearson and Spearman
correlation between predicted similarity scores and gold
scores.

4.2. Results
The results are shown in Table 2. The fine-tuned ChatGPT-
4o attains the strongest correlation (Pearson 0.762), outper-
forming the graph-augmented RA-Sim by 0.14 Pearson / 0.09
Spearman.

4.3. Discussion
To verify the effectiveness of fine-tuning, we compared sim-
ilarity scores before and after adaptation. Table 3 shows
that scores improved for 42% of pairs with ChatGPT-4o and
52% with ChatGPT-4o mini, while only 10 % deteriorated.
The overall distribution shifted toward values closer to the

Table 2
Patent phrase similarity inference performance.

Type Model Pearson Spearman

Embedding

Word2Vec[4] 0.437 0.483
GloVe[4] 0.429 0.444
BERT[4] 0.418 0.409
SBERT (all-mpnet)[4] 0.598 0.535
Patent-BERT[4] 0.528 0.535
OpenAI Embeddings 0.581 0.564
multilingual-e5-large 0.574 0.546

Graph RA-Sim[14] 0.622 0.652
+encoder

LLM

ChatGPT-4o 0.505 0.514
ChatGPT-4o mini 0.371 0.403
ChatGPT-4o (fine-tuned) 0.762 0.738
ChatGPT-4o mini (fine-tuned) 0.742 0.718

gold standard, indicating that fine-tuning successfully sup-
plements the model’s domain knowledge and yields more
accurate similarity estimates.

Table 3
Change in similarity scores after fine-tuning.

Improve Same Impair
ChatGPT-4o 3,899 (0.422) 4,335 (0.470) 998 (0.108)
ChatGPT-4o mini 4,806 (0.521) 3,520 (0.381) 906 (0.098)

Because the LLM classifies each pair into ten semantic re-
lations, we can compute precision and recall for every class.
Tables 4 and 5 list the fine-tuned ChatGPT-4o and ChatGPT-
4o mini results, respectively. Both models excel at Not re-
lated, Antonym, and high-similarity classes, while Holonym,
Meronym, and Structural match remain challenging—mainly
due to their scarcity in the training data. Therefore, we
constructed a multilingual thesaurus while improving these
problems using the method proposed in Section 3.3.

Table 4
Evaluation results for each relation label by ChatGPT-4o (fine-
tuned).

Relation P R F1
Very highly related 0.94 0.73 0.82
Highly related 0.50 0.58 0.54
Hypernym 0.42 0.44 0.43
Holonym 0.27 0.24 0.25
Structural 0.05 0.02 0.03
Meronym 0.18 0.20 0.19
Hyponym 0.41 0.40 0.41
Antonym 0.71 0.59 0.64
Other domain 0.33 0.30 0.3
Not related 0.74 0.79 0.76

5. Automatic Construction of a
Multilingual Thesaurus Using
Cross-Lingual Verification

We automatically construct a multilingual thesaurus from
the full text of Japanese and US patents published between
1993 and 2023. Our main objective is to extract hypernym-
hyponym relationships, but we also extract other relation-
ships in the process. The procedure is described below.

1. Using the expressions “A nado no B” (Japanese)
and “B such as A” (English), we extracted 613,251



Table 5
Evaluation results for each relation label by ChatGPT-4o mini
(fine-tuned).

Relation P R F1
Very highly related 0.84 0.72 0.78
Highly related 0.47 0.49 0.48
Hypernym 0.41 0.38 0.39
Hyponym 0.42 0.43 0.43
Structural 0.03 0.03 0.03
Meronym 0.16 0.15 0.15
Holonym 0.25 0.29 0.27
Antonym 0.61 0.62 0.61
Other domain 0.31 0.31 0.31
Not related 0.74 0.76 0.75

Japanese and 518,166 English candidate pairs and
kept 42,784 bilingual pairs after translation align-
ment using ChatGPT.

2. ChatGPT-4o mini (fine-tuned) predicted relations
for both languages; only pairs with matching labels
were retained (21,673 pairs).

In Step 2, we decided to use ChatGPT-4omini (fine-tuned),
which is comparable to ChatGPT-4o, which had the highest
value in Table 2, because processing large amounts of data
is extremely costly.

Tables 6 and 7 show the distribution of labels obtained
by classifying the top and bottom candidates in English and
Japanese from Step 1 using ChatGPT-4o mini (fine-tuned).
Additionally, Table 8 shows the distribution of labels for the
results where English and Japanese agree.

Table 6
Relation label distribution by ChatGPT-4o mini (English).

Relation Count Share
Very highly related 311 0.007
Highly related 1,626 0.038
Hypernym 3,419 0.080
Hyponym 26,075 0.610
Structural 258 0.006
Meronym 2,815 0.066
Holonym 3,345 0.078
Antonym 68 0.002
Other domain 3,438 0.080
Not related 1,429 0.033

Table 7
Relation label distribution by ChatGPT-4o mini (Japanese).

Relation Count Share
Very highly related 482 0.011
Highly related 2,642 0.062
Hypernym 4,309 0.101
Hyponym 24,138 0.564
Structural 394 0.009
Meronym 2,433 0.057
Holonym 3,448 0.081
Antonym 82 0.002
Other domain 3,571 0.084
Not related 1,285 0.030

Figure 1 shows a part of the multilingual thesaurus cre-
ated using the proposed method. When 200 items were
randomly selected and evaluated manually, 194 (97%) were
correct. Among the incorrectly extracted entries, there were

Table 8
Relation label distribution where Japanese and English predic-
tions agree.

Relation Count Share
Very highly related 292 0.013
Highly related 468 0.022
Hypernym 556 0.026
Hyponym 18,355 0.847
Structural 3 0.000
Meronym 425 0.020
Holonym 622 0.029
Antonym 7 0.000
Other domain 724 0.033
Not related 221 0.010

Figure 1: Examples of Japanese–English pairs whose predicted
relation labels agreed.

five cases that were not entirely incorrect but depended on
context, such as “materials (anchor) - metals (target) - Hy-
ponym (relation)” and “information (anchor) - time (target)
- Hyponym (relation),” and one case that was completely in-
correct, such as “materials (anchor) - combinations (target) -
Homonym (relation).”

6. Conclusion
We introduced a three–stage pipeline that combines
a lightweight embedding filter, a minimally fine-tuned
ChatGPT-4o, and pattern-driven cross-lingual verification
to build a continuously expandable multilingual patent the-
saurus. Experiments on the Google Patent Phrase Similarity
Dataset demonstrated that the proposed LLM surpasses
both embedding baselines and the recent graph-augmented
RA-Sim model (Pearson 0.762 vs. 0.622). On 42,784 auto-
matically aligned Japanese–English hypernym pairs, the
pattern + LLM strategy achieved 97 % accuracy.

The framework requires no citation crawling, no external
knowledge base, and no language-specific rules beyond a
handful of fixed expressions, yet delivers state-of-the-art ac-
curacywhile remaining fully incremental. These traits make
it attractive for industry settings where frequent thesaurus
updates and multilingual coverage are essential.
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