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Abstract—Researchers and developers search for patents in 
fields related to their own research to obtain information on issues 
and effective technologies in those fields for use in their research. 
However, it is impossible to read through the full text of many 
patents, so a method that enables patent information to be grasped 
briefly is needed. In this study, we analyze the structure of U.S. 
patents with the aim of extracting important information. Using 
Japanese patents with structural tags such as “field”, “problem”, 
“solution”, and “effect”, and corresponding U.S. patents (patent 
families), we automatically created a dataset of 81,405 U.S. patents 
with structural tags. Furthermore, using this dataset, we conduct 
an experiment to assign structural tags to each sentence in the U.S. 
patents automatically. For the embedding layer, we use a language 
representation model, Bidirectional Encoder Representations 
from Transformer, pretrained on patent documents and construct 
a multi-label classifier that classifies a given sentence into one of 
four categories: “field”, “problem”, “solution”, or “effect”. Using 
a loss function that considers the unbalanced amount of data for 
each structural tag, we are able to classify sentences related to 
“field”, “problem”, “solution”, and “effect” with precision of 
0.6994, recall of 0.8291, and F-measure of 0.7426. 
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I. INTRODUCTION 
When researchers and company engineers consider new 

research or development, utilizing patent information is 
important for grasping the latest technical trends. On the other 
hand, it is difficult to read through all the patents published 
around the world. Under such circumstances, a method that 
enables an efficient overview of technical trends is needed. To 
overview technical trends, it is effective to classify patents 
according to the viewpoints of technologies and problems, etc. 
However, to do so, it is necessary to extract the description part 
of technologies and problems from each patent. Therefore, this 
study aims to analyze the structure of U.S. patents. 

Unlike U.S. patents, Japanese patents have explicit items 
such as “Field of Technology” (hereinafter referred to as “field”), 
“Problem to Be Solved by the Invention” (hereinafter referred 
to as “problem”), “Solution for Solving the Problem” 
(hereinafter referred to as “solution”), and “Effect of the 
Invention” (hereinafter referred to as “effect”). As a result, 
researchers and company engineers have to spend more time 
reading U.S. patents. Therefore, in this study, we perform a 
structural analysis of U.S. patents and automatically extract 
sentences that provide clues for classification. 

To achieve this, we analyze the structure of U.S. patents by 
using patent families. We first find from U.S. patents the 
bilingual sentences described in the “field”, “problem”, 
“solution”, and “effect” sections in Japanese patents. Then, we 
construct a U.S. patent dataset with a clear structure by assigning 
the same structural tags as those of the Japanese patent to the 
found sentences. Finally, by applying machine learning using 
the created dataset, we construct a system that can automatically 
extract sentences related to “field”, “problem”, “solution”, and 
“effect”, even for U.S. patents that do not have patent families. 

By extracting key sentences about technology trends from 
U.S. patents, we can obtain clues for clustering each patent. This 
also allows researchers and company engineers to understand 
the current technology of their competitors and to conduct 
efficient research and development that meets global demand. 

II. RELATED WORK 

A. Structural Analysis of Technical Documents 
Although it is important to analyze technical documents such 

as patents and research papers, it is difficult to analyze the entire 
text. In such cases, it is useful to clarify initially the structure of 
the document to narrow down the target sentences before 
conducting the analysis. In this section, we introduce a study that 
used machine learning to analyze the structure of technical 
documents. 

Prabhakaran et al. [1] analyzed the structure of abstracts with 
the aim of predicting the growth and decline of scientific topics. 
They constructed a classifier that applies seven different labels 
to sentences (“background”, “objective”, “data”, “design”, 
“method”, “result,” and “conclusion”) using manually labeled 
abstracts, in which the authors assigned labels to sentences, as 
training data. They applied Conditional Random Field to these 
data and parsed approximately 2.4 million abstracts to 
investigate the relationship between labels and topics. The 
results showed that the technologies discussed in “conclusion” 
sentences tended to decline, while the technologies discussed in 
“method” sentences were in the early stage of growth. 

Li et al. [2] assumed that evidence plays an important role in 
biomedical research and extracted evidential descriptions of the 
figures and tables from biomedical articles. They constructed a 
model consisting of embedding, attention, and tagging layers. 
For embedding, they used BioGloVe [3], BioBERT [4], and 
SciBERT [5], which were pretrained on biomedical texts, and 
Recurrent Neural Network (RNN) and Long Short Term 
Memory (LSTM) for attention. Experiments were conducted on 



two datasets, PubMed-RCT [6] and SciDT [7], and the models 
using SciBERT and LSTM performed the best. 

Given this background, the purpose of this study is to 
analyze the structure of U.S. patents with the aim of classifying 
patents. To achieve this, we analyze the structure of U.S. patents 
by assigning four types of structural tags, “field”, “problem”, 
“solution”, and “effect”, to each sentence in a U.S. patent. We 
then construct training data with the Japanese–U.S. patent 
family and use Bidirectional Encoder Representations from 
Transformer (BERT) [8] for embedding. 

B. Extracting Information in Units Shorter than a Sentence 
Techniques for extracting important information from units 

shorter than a sentence are said to be useful for document 
retrieval and trend analysis. In the patent classification, which is 
the purpose of this study, it is necessary to extract the names of 
classification axes from important sentences in patents, so this 
research is very relevant for the future. 

Gupta et al. [9] proposed a method for automatically 
extracting words belonging to three categories, “focus”, 
“technique”, and “domain”, from paper abstracts by pattern 
matching. In this method, for example, the object appearing 
immediately after the verb “propose” is considered to belong to 
the “focus” category. 

Heffernan et al. [10] created a classifier to determine 
whether a phrase in a paper indicates a problem or a solution to 
improve the effectiveness of technical document retrieval and 
compare similar papers. They first created a list of phrases 
similar to “problem” and “solution” and collected sentences 
containing these phrases from papers. The collected sentences 
were then parsed, and phrases that could be said to indicate a 
problem or solution were selected as positive samples. The 
phrases that had the same sentence structure as the positive 
sample but did not indicate a problem or solution were 
considered as the negative sample. Using the collected samples 
as training data, three types of classifiers were trained: Naive 
Bayes, Logistic Regression, and SVM. The experimental results 
showed that the SVM-based classifier had the highest accuracy. 

Weston et al. [11] constructed a system to analyze sentences 
in materials science articles with the aim of assisting in obtaining 
information about materials science. First, they manually 
assigned seven types of tags (“material”, “phase”, “sample 
descriptor”, “property”, “application”, “synthesis method”, and 
“characterization”) to each word in the paper’s abstract. Then, 
they used those data as training data for information extraction 
by LSTM. 

In this study, sentences with structural tags are extracted 
from patents. In the future, it will be necessary to determine the 
axis of technology analysis using information extraction 
methods based on units shorter than sentences, such as those 
presented in this section. 

C. Translation of Patent Documents 
In this study, we create a dataset using Japanese and U.S. 

patent families. In the process of creating the dataset, translation 
from Japanese to English is required. In this section, we 
introduce efforts required for the translation of patent documents. 

One of the tasks in NTCIR-10 [12] is the Patent Machine 
Translation Task. This task provides a large test collection 
containing training, development, and test data for 
Chinese/English and Japanese/English patent machine 
translation. The collection contains a bilingual Japanese–
English patent translation corpus of about 3.2 million pairs. We 
constructed a Japanese–English machine translation system 
based on state-of-the-art Transformer architecture [13]. 

III. ANALYZING THE STRUCTURE OF U.S. PATENTS 

A. Analyzing the Structure of U.S. Patents Using Patent 
Families 
As described in Section Ⅰ, U.S. patents do not explicitly 

include items describing “field”, “problem”, “solution”, and 
“effect”. Therefore, we propose a method to construct a 
structural analysis system of U.S. patents by creating a dataset 
with structural tags using patent families and performing 
machine learning using the dataset as training data. 

Generally, patent rights are granted independently in each 
country. To obtain patent rights in each country, the applicant 
needs to apply for patents for the same invention in several 
countries. Such a group of patent documents with the same 
content is called a patent family. Although the language and 
structure of patents in the patent family differ, the texts that 
compose the application documents closely correspond to each 
other. In this study, we analyze the structure of U.S. patents by 
assigning the same structural tags to sentences in U.S. patents 
that share the same meaning as sentences in Japanese patents to 
which the structural tags were manually assigned. Then, using 
the structured U.S. patents as training data, we conduct machine 
learning to construct a structural analysis system for U.S. patents. 

The procedure for the structural analysis of U.S. patents is 
shown below. 

1) Translate each sentence with a structure tag in the Japanese 
patent into English. 

2) Represent all the sentences in the U.S. patent and the 
translated sentences in 1) as vectors. The sentence in the U.S. 
patent that has the highest cosine similarity with the 
translated sentence in 1) is assigned the same structure tag 
as that of the Japanese patent. 

3) Using the data in 2) as training data, perform machine 
learning to extract automatically sentences related to “field”, 
“problem”, “solution”, and “effect” from U.S. patents. 

Steps 1) and 2) are described in detail in Section Ⅲ.B, and 
step 3) is described in Section Ⅲ.C. 

B. Dataset Creation 
First, a machine translator built using the NTCIR-10 Patent 

Machine Translation Test Collection and the sequence modeling 
tool FAIRSEQ [14] was used to translate sentences with 
structural tags in Japanese patents into English. FAIRSEQ is a 
tool that can be used to train text generation models such as 
machine translation. The translator built in this experiment uses 
Transformer and achieved a BLEU score of 44.11. 

Next, we extracted sentences from the U.S. patent that share 
the same meaning as the translated sentences. First, the 
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sentences in the translation result and the full text of the U.S. 
patent are vectorized using PatentSBERTa [15], and then the 
cosine similarity between the sentences in the translation result 
and the full text of the U.S. patent, which is a patent family of 
the Japanese patent, is calculated. The sentence in the U.S. 
patent with the highest score is considered to have the same 
meaning as that in the Japanese patent, and is therefore assigned 
the same structure tag as the Japanese patent. Using this method, 
a dataset of U.S. patents with structural tags was created. Since 
the patent families were faithfully translated, the sentence with 
the highest score was expected to be almost a bilingual sentence. 
Note that a sentence may be assigned more than one structure 
tag because it may have the highest score for more than one 
resulting translation. In addition, not all structure tags are 
necessarily present in Japanese patents. For example, some 
Japanese patents do not include “effect”. 

Steps 1) and 2) were used to assign structure tags to 81,405 
U.S. patents that had Japanese patents as their patent families. 
Of the total 22,016,132 sentences, 1,366,165 sentences were 
assigned at least one of the four types of structure tags. In this 
experiment, we did not use sentences that had not been assigned 
any structure tags; we only classified sentences that had been 
assigned one or more structure tags. If the classifier is used for 
the full text of patents, there is a high possibility that structure 
tags will be assigned to ordinary sentences as well, but 
considering that patent classification will be performed in the 
future, we believe that the presence of some noise is not a 
significant problem. 

C. Analyzing the Structure of U.S. Patents by Machine 
Learning 
Machine learning is performed using the dataset created in 

the previous section as training data. We used BERT to assign 
structural tags to sentences. BERT is a Transformer-based 
pretrained model that can be applied to any task in natural 
language processing. By fine-tuning BERT to the structural tag 
classification task, we built multi-label classifiers that 
automatically classified a given sentence into one of four 
categories: “field”, “problem”, “solution”, or “effect”. 

We pretrained the BERT model using 3.5 million sentences 
in the detailed description sections and claims of U.S. patents. 
We then constructed a classifier using the patent-specific BERT 
based on the pretrained BERT model. Due to the unbalanced 
number of data for each structural tag in the dataset, we also 
tested undersampling and weighted loss function methods. 

IV. EXPERIMENT 
To confirm the validity of the structural analysis methods for 

U.S. patents proposed in Section Ⅲ, we conducted experiments 
under various conditions. 

A. Experimental Setup 
Experimental Data 

Of the 1,366,165 sentences that were automatically assigned 
structural tags according to Section Ⅲ.B, 60% were used for 
training, 20% for validation, and 20% for testing. Table Ⅰ shows 
a breakdown of the structural tags assigned. 

 

TABLE I.  BREAKDOWN OF STRUCTURE-TAGGED SENTENCES 

 
Number of Sentences 

Training Validation Testing Total 

Field 56,486 18,969 18,727 94,182 

Problem 243,606 81,320 81,336 406,262 

Solution 464,662 155,017 154,825 774,504 

Effect 106,648 35,324 35,706 177,678 

Method 

We examined the following three methods: patent-specific 
BERT, undersampling, and weighted loss function. Furthermore, 
to confirm the effectiveness of our methods, we compared them 
with a classifier using BERT-base-uncased, which is a standard 
BERT model for English texts. For all classifiers, the sigmoid 
function and binary cross-entropy loss were used to calculate the 
loss. The training parameters were: maximum number of tokens 
= 128, batch size = 256, and number of epochs = 10. The details 
of each method are described below. 

l Patent-specific BERT (our method): BERT was pretrained 
using 3.5 million sentences from U.S. patents. The classifiers 
were trained using the dataset in Table Ⅰ. The learning rate 
was 1e-6. 

l Undersampling (our method): Due to the disproportionate 
number of data for each structural tag, we undersampled the 
training data. We matched the number of sentences in each 
structural tag to the number of training sentences in the “field” 
with the lowest number of sentences (56,486). The validation 
and testing numbers are shown in Table Ⅰ. Patent-specific 
BERT was used for embedding. The learning rate was 1e-10. 

l Weighted loss function (our method): The dataset had an 
unbalanced number of positive and negative examples for 
each structural tag. Therefore, we weighted the losses when 
calculating them. We increased the weight of positive 
examples by multiplying the loss by the ratio of negative to 
positive examples. Patent-specific BERT was used for 
embedding. The classifiers were trained using the dataset in 
Table Ⅰ. The learning rate was 1e-6. 

l BERT-base-uncased (baseline method): As a baseline 
method, we used BERT-base-uncased instead of patent-
specific BERT. 

B. Results 
We evaluated the classification of each structural tag. As 

shown in Table Ⅱ, the results of the experiment showed that one 
of our methods, “patent-specific BERT”, obtained an F-
measure of 0.7426, which outperformed the others. 

C. Discussion 
In this experiment, we estimated bilingual sentences based 

on the assumption that sentences in a patent family are 
translated in a one-to-one relationship. However, there are cases 
in which a single sentence in a Japanese patent is divided into 
two sentences in a U.S. patent. Conversely, two sentences in a 
Japanese patent can be combined into a single sentence in a U.S. 

TABLE II.  CLASSIFICATION RESULTS 



 Precision Recall F-measure 

Patent-
specific 
BERT 

Field 0.9457 0.8494 0.8920 

Problem 0.8654 0.7548 0.8052 

Solution 0.8297 0.8877 0.8573 

Effect 0.6757 0.3056 0.4158 

Average 0.8291 0.6994 0.7426 

Under-
sampling 

Field 0.0838 0.9084 0.1528 

Problem 0.2976 0.9962 0.4575 

Solution 0.5603 0.7666 0.6467 

Effect 0.1308 0.9998 0.2307 

Average 0.2681 0.9178 0.3719 

Weighted 
loss 
function 

Field 0.6506 0.9378 0.7636 

Problem 0.7644 0.8341 0.7967 

Solution 0.8517 0.8359 0.8433 

Effect 0.3387 0.7276 0.4601 

Average 0.6514 0.8339 0.7159 

BERT-
base-
uncased 
(baseline) 

Field 0.9525 0.8434 0.8915 

Problem 0.8464 0.7714 0.8061 

Solution 0.8346 0.8758 0.8543 

Effect 0.7045 0.2766 0.3921 

Average 0.8345 0.6918 0.7360 

 
patent. Although the method used in this experiment produced 
highly accurate translations, we believe that some issues need 
to be addressed in the subsequent discovery of bilingual 
sentences. In the future, it will be necessary to consider the 
possibility of determining multiple bilingual sentences 
depending on the similarity score. 

The undersampling method did not provide sufficient 
training because the number of sentences used for training was 
greatly reduced. This resulted in the assignment of structural 
tags to the majority of sentences, which led to a high recall but 
extremely low precision. 

In this experiment, sentences without any structural tags 
were not used as training data. The reason for this is that 
untagged sentences are far more numerous than tagged 
sentences. We believe that eliminating untagged sentences 
would increase the likelihood that structural tags would be 
assigned to sentences that should not be assigned structural tags. 
It is therefore necessary to investigate the accuracy of 
classification for sentences that should not be assigned 
structural tags in the future. 

V. CONCLUSION 
In this study, we created a dataset containing 81,405 U.S. 

patents with structural tags. Using this dataset, we conducted an 
experiment to classify automatically sentences from the U.S. 

patents that are important for classifying each patent onto a 
technical analysis axis. The experimental results showed that 
one of our methods, patent-specific BERT, obtained an F-
measure of 0.7426, which outperformed the others. 
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